1. An unknown compound is tested to identify whether it contain	ns sulfate, carbonate of halide ions	•
What is the correct sequence of tests required?		
 A carbonate, halide, sulfate B carbonate, sulfate, halide C halide, carbonate, sulfate D sulfate, carbonate, halide 		
Your answer		[1]
2. A student analyses a solution of a salt.		
The results are shown below.		
Test	Observation	
Reaction with NaOH(aq)	Green precipitate	
Reaction with Ba(NO ₃) ₂ (aq)	White precipitate	
What is the formula of the salt? A CuCl ₂ B CuSO ₄ C FeCl ₂ D FeSO ₄		
Your answer		[1]
3. Solid ammonia, NH ₃ , contains hydrogen bonds.		
i. Suggest why solid ammonia has a lower melting point th	nan ice.	
		[2]

ii.	When ammonia dissolves in water, ammonium ions, NH ₄ +, are formed.	
	Draw a 'dot-and-cross' diagram to show the bonding in an NH ₄ ⁺ ion.	
	Show outer electrons only.	
	[2]
iii.	Outline how you would test for the presence of NH ₄ ⁺ ions in a solution.	
	Your answer should include observations.	
		_
		_
		_
	[2]
4 . T	utton's salts are 'double salts' with the formula X ₂ Y (Z O ₄) ₂ • 6H ₂ O.	
	utton's salt contains two cations: X $^+$ and Y $^{2+}$.	
•	X ⁺ can be an ion of the Group 1 elements K, Rb, Cs or Fr, or an ammonium ion.	
•	Y ²⁺ can be a 2+ ion of magnesium or an ion of most of the transition elements in Period 4.	
•	Z can be S or Cr.	
'NH	₄) ₂ Cu(SO ₄) ₂ • 6H ₂ O is an example of a Tutton's salt.	
•	student dissolves their Tutton's salt in water. A pale blue solution forms.	
	student carries out two tests on this aqueous solution.	
i.	The student adds an excess of aqueous ammonia to their aqueous solution of Tutton's salt. A deep blue solution forms.	
	The complex ion responsible for the deep blue solution has a molar mass of 167.5 g mol ⁻¹ .	
	Suggest the formula of this complex ion.	
	[1]

ii.	The student adds NaOH(aq) to the aqueous solution of Tutton's salt and warms the mixture.	
	A precipitate and a gas are formed.	
	Write the formulae of the precipitate and gas and suggest a test that could confirm the identity of	the gas.
	Formula of precipitate	
	Formula of gas	
	Test to confirm the identity of the gas	
		[3]
iii.		
		[2]

5. A student adds aqueous potassium carbonate to one test tube and aqueous silver nitrate to a second test tube.

The student adds dilute hydrochloric acid to each test tube.

Which row has the correct observations?

	Aqueous potassium carbonate	Aqueous silver nitrate
Α	no change	precipitate
В	no change	no change
С	effervescence	no change
D	effervescence	precipitate

Your answer	 [41]
i oui aliswei	 Į • • • • • • • • • • • • • • • • • • •

6. This question is about some elements in Period 3 and compounds they form.

A stud	dent has a 5.00 g mixture of sodium chloride, NaC/(s), and barium nitrate, Ba(NO ₃) ₂ (s).
The s	student also has a solution of sodium sulfate, Na ₂ SO ₄ (aq).
The s	student uses the method below to determine the percentage by mass of NaC/(s) in the mixture.
Step Step Step Step	 Add an excess of Na₂SO₄(aq) to the solution. A precipitate of barium sulfate forms. Filter off the precipitate, wash with water, and dry.
The n	nolar mass of barium sulfate is 233.4 g mol ⁻¹ .
i.	Write an equation for the formation of barium sulfate in step 2 .
	Include state symbols.
	[2]
ii.	The student obtains 3.28 g of precipitate.
	Calculate the percentage by mass of NaC/(s) in the 5.00 g mixture.
	Give your answer to 3 significant figures.
	percentage by mass of NaC/ (s) = % [4]
iii.	The student changes the method in 2(b) .
	In step 2 , the student adds an excess of silver nitrate solution, AgNO ₃ (aq), instead of Na ₂ SO ₄ (aq).
	Explain whether this change would allow the student to determine the percentage by mass of $NaCI(s)$ in the mixture.
	[2]
	k=J

7. This question is about halogens and practical tests

A student is supplied with aqueous solutions of ionic compounds B and C .
Compound B is a chloride, bromide or iodide of a Group 1 element.
Compound C is a chloride, bromide or iodide of a Group 2 element.
The molar masses of B and C are both in the range 100–115 g mol ⁻¹ .
Use this information and test-tube tests to show how the student could identify the halide present in B and C and the formulae of B and C .
Explain your reasoning.
In your answer, include observations, colours and equations.

Your answer

[1]

8. T	his question is about the reactions of Group 2 metals and their compounds.	
	ample of barium oxide is added to distilled water at 25 °C. blourless solution forms containing barium hydroxide, Ba(OH) ₂ .	
	solution is made up to 250.0 cm³ with distilled water. pH of this solution is 13.12.	
i.	Determine the mass of barium oxide that was used.	
	Give your answer to 3 significant figures.	
	mass of barium oxide =	g [5]
ii.	10 cm ³ of dilute sulfuric acid is added to 10 cm ³ of the colourless solution of Ba(OH) ₂ . Write an ionic equation, including state symbols, for the reaction.	
		[1]
9 . A	an aqueous solution contains a mixture of chloride, bromide and iodide ions.	
AgN	$NO_3(aq)$ is added to this mixture, followed by an excess of dilute $NH_3(aq)$.	
The	resulting mixture is then filtered.	
Whi	ich compound(s) is/are present in the residue on the filter paper?	
Α	AgC/ only	
В	AgC/ and AgBr	
С	AgBr only	
D	AgBr and AgI	

A student adds barium oxide, BaO, to water.

A reaction takes place forming a colourless solution.

10. This question is about some Group 2 elements and their compounds.

i.	Predict the approximate pH of the colourless solution.
	pH =
ii.	A student adds a few drops of dilute sulfuric acid to the colourless solution.
	Describe what the student would observe, and give the formula of the barium compound produced.
	Observation
	Formula of barium compound
	[2]

END OF QUESTION PAPER